

Welcome to cookiecutter-modern-pypackage’s documentation!

Getting Started

	Cookiecutter Modern PyPackage
	Features

	Quickstart

	Contributing to this project

	Credits

	Tutorial
	Step 1: Install Cookiecutter

	Step 2: Generate Your Package

	Step 3: Create a GitHub Repo

	Step 4: Install Dev Requirements

	Step 5: Set Up Codecov

	Step 6: Set Up Read the Docs

	Step 7: Release on PyPI

	Having problems?

	Changelog
	Unreleased

	2.0.0 - 2021-12-05

	1.2.2 - 2021-03-19

	1.2.1 - 2021-01-23

	1.2.0 - 2021-01-17

	1.1.3 - 2020-12-23

	1.1.2 - 2020-11-07

	1.1.1 - 2020-10-18

	1.1.0 - 2020-10-17

	1.0.1 - 2020-10-15

	1.0.0 - 2020-10-15

	0.2.1 - 2020-10-05

	0.2.0 - 2020-10-04

	0.1.4 - 2020-09-07

	0.1.3 - 2020-08-13

	0.1.2 - 2020-06-14

	0.1.1 - 2020-06-14

	0.1.0 - 2020-06-11

	Contributing
	Types of Contributions

	Start contributing!

	Releasing cookiecutter-modern-pypackage

	Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

Basics

	Prompts
	Templated Values

	Options

	Invoke

Advanced Features

	Console Script Setup
	How It Works

	Usage

	More Details

Cookiecutter Modern PyPackage

[image: GitHub release (latest SemVer)] [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/releases]
[image: Python Version] [https://www.python.org/]
[image: License] [https://opensource.org/licenses/MIT]
[image: Tests] [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/actions?workflow=tests]
[image: Read the Docs] [https://cookiecutter-modern-python-package.readthedocs.io]
[image: Black] [https://github.com/psf/black]
[image: pre-commit] [https://github.com/pre-commit/pre-commit]

Cookiecutter [https://github.com/cookiecutter/cookiecutter] template for a modern Python package.

	GitHub repo: https://github.com/mario-bermonti/cookiecutter-modern-pypackage.git

	Documentation: https://cookiecutter-modern-python-package.readthedocs.io

	Free software: MIT license

Features

	Dependency tracking using Poetry [https://python-poetry.org/]

	Testing setup with Pytest [https://github.com/pytest-dev/pytest]

	Github Actions [https://github.com/features/actions] ready for Continuous Integration testing

	Linting provided by Flake8 [https://gitlab.com/pycqa/flake8] with Flakehell [https://github.com/life4/flakehell]

	Docstring linting provided by Darglint [https://github.com/terrencepreilly/darglint] using the Numpy Python Style Guide [https://numpydoc.readthedocs.io/en/latest/format.html]

	Static type checking by Mypy [https://github.com/python/mypy]

	Formatting provided by Black [https://github.com/psf/black] and Isort [https://github.com/timothycrosley/isort]

	Checks dependencies for known security vulnerabilities with Safety [https://github.com/pyupio/safety]

	Git hooks managed by pre-commit [https://pre-commit.com/].

	All development tasks (lint, format, test, etc) wrapped up in a python CLI by invoke [https://www.pyinvoke.org/]

	Multiple Python environments testing provided by Nox [https://nox.thea.codes/en/stable/]

	Documentation provided by Sphinx [https://www.sphinx-doc.org/en/master/] ready for generation with, for example, Read the Docs [https://readthedocs.org/]

	Command line interface using Click [http://click.pocoo.org/] (optional)

	Automated dependency updates with Dependabot [https://dependabot.com/]

	Coverage reports on Codecov [https://codecov.io/]

	Automated releases to PyPI [https://pypi.org/] (optional)

Quickstart

Install the latest Cookiecutter if you haven’t installed it yet (this requires Cookiecutter 1.4.0 or higher):

pip install -U cookiecutter

Generate a Python package project:

cookiecutter gh:mario-bermonti/cookiecutter-modern-pypackage

Then:

	Create a repo and put it there.

	Install the dev requirements into a virtualenv. (poetry install)

	Install pre-commit hooks. (poetry run inv install-hooks)

	Configure Codecov [https://codecov.io/] repository settings. (Codecov App, CODECOV_TOKEN)

	Add the repo to your Read the Docs [https://readthedocs.org/] account + turn on the Read the Docs service hook.

	Configure PyPI [https://pypi.org/] token. (PYPI_TOKEN)

	Release your package by pushing a new tag.

For more details, see the tutorial [https://cookiecutter-modern-python-package.readthedocs.io/en/latest/tutorial.html].

Contributing to this project

All contributions are welcome!

Will find a detailed description of all the ways you can contribute to cookiecutter-modern-pypackage in
the contributing guide.

This is a beginner-friendly project so don’t hesitate to ask any questions or get in touch
with the project’s maintainers.

Please review the project’s code of conduct before making
any contributions.

Credits

This cookiecutter is a fork of fedejaure’s [https://github.com/fedejaure/cookiecutter-modern-pypackage]
awesome python package template. It uses most of fedejaure’s code and configuration,
but it has been adapted so it is easier to use by scientists who have limited
technical background in programming.

Please do checkout fedejaure’s [https://github.com/fedejaure/cookiecutter-modern-pypackage] template as it is great and may even be better
suited for your needs.

This template is also influenced by these awesome projects:

	audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage]: Cookiecutter template for a Python package.

	briggySmalls/cookiecutter-pypackage [https://github.com/briggySmalls/cookiecutter-pypackage]: A fork from audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] using Poetry for package management, with linting, formatting and more.

	hypermodern-python [https://cjolowicz.github.io/posts/hypermodern-python-01-setup/]: Hypermodern Python article series.

	TezRomacH/python-package-template [https://github.com/TezRomacH/python-package-template]: Your next Python package needs a bleeding-edge project structure.

Tutorial

Note

Did you find any of these instructions confusing? Edit this file [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/blob/master/docs/tutorial.rst]
and submit a pull request with your improvements!

To start with, you will need a GitHub account [https://github.com/] and an account on PyPI [https://pypi.python.org/pypi]. You only need the Pypi account if you want to publish to pypi. Create these before you get started on this tutorial. If you are new to Git and GitHub, you should probably spend a few minutes on some of the tutorials at the top of the page at GitHub Help [https://help.github.com/].

Step 1: Install Cookiecutter

Install cookiecutter:

$ pip install cookiecutter

We’ll also need poetry so install that too [https://python-poetry.org/docs/#installation].

Step 2: Generate Your Package

Now it’s time to generate your Python package.

Use cookiecutter, pointing it at the cookiecutter-pypackage repo:

$ cookiecutter gh:mario-bermonti/cookiecutter-modern-pypackage

You’ll be asked to enter a bunch of values to set the package up.
If you don’t know what to enter, stick with the defaults.

Step 3: Create a GitHub Repo

Go to your GitHub account and create a new repo named mypackage, where mypackage matches the [project_name] from your answers to running cookiecutter.

You will find one folder named after the [project_name]. Move into this folder, and then setup git to use your GitHub repo and upload the code:

$ cd mypackage
mypackage $ git init .
mypackage $ git add .
mypackage $ git commit -m "Initial skeleton."
mypackage $ git remote add origin git@github.com:myusername/mypackage.git
mypackage $ git push -u origin master

Where myusername and mypackage are adjusted for your username and package name.

You’ll need a ssh key to push the repo. You can Generate [https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/] a key or Add [https://help.github.com/articles/adding-a-new-ssh-key-to-your-github-account/] an existing one.

Step 4: Install Dev Requirements

You should still be in the folder containing the pyproject.toml file.

Install the new project’s local development requirements inside a virtual environment using poetry:

$ poetry install
$ poetry run inv install-hooks

Step 5: Set Up Codecov

Codecov [https://codecov.io/] provides highly integrated tools to group, merge, archive, and compare coverage reports.

Log into your account at Codecov [https://codecov.io/]. If you don’t have one, create one and log into it.

Click on Add new repository. Choose the desired one. Then follow the instructions to setup the CODECOV_TOKEN on the github secrets.

Install the Codecov [https://codecov.io/] github App.

Now your coverage reports will be generated when a new PR is created.

Step 6: Set Up Read the Docs

Read the Docs [https://readthedocs.org/] hosts documentation for the open source community. Think of it as Continuous Documentation.

Log into your account at Read the Docs [https://readthedocs.org/] . If you don’t have one, create one and log into it.

If you are not at your dashboard, choose the pull-down next to your username in the upper right, and select “My Projects”. Choose the button to Import the repository and follow the directions.

Now your documentation will get rebuilt when you make documentation changes to your package.

Step 7: Release on PyPI

Note

This section only applies if you want to publish your project to PyPI.

The Python Package Index or PyPI [https://pypi.python.org/pypi] is the official third-party software repository for the Python programming language. Python developers intend it to be a comprehensive catalog of all open source Python packages.

Log into your account at PyPI [https://pypi.python.org/pypi]. Go to Account Settings and generate an API tokens.

Go to the repository settings on GitHub, and add tow secrets named PYPI_TOKEN with the tokens that you just generated.

Release your package by pushing a new tag.

Having problems?

Visit our Issues [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/issues] page and create a new Issue. Be sure to give as much information as possible.

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

Unreleased [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v2.0.0...develop]

2.0.0 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v1.2.2...v2.0.0] - 2021-12-05

Changed

	Use my info in the project

	Fix errors with poetry, black, flakehell, and other dependencies

	Improve the ci actions

	Add tests

	Fix license names

	Change some configs to better suite our needs in research

	Many dependencies have been updated

1.2.2 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v1.2.1...v1.2.2] - 2021-03-19

Changed

	xdoctest from 0.15.2 to 0.15.4.

	pre-commit from ^2.9.3 to ^2.11.1.

	pytest from ^6.2.1 to ^6.2.2.

	mypy from ^0.790 to ^0.812.

	watchdog from ^1.0.2 to ^2.0.2.

	sphinx from ^3.4.3 to ^3.5.2.

	darglint from ^1.5.8 to ^1.7.0.

	flake8-annotations from ^2.5.0 to ^2.6.1.

	flake8-bugbear from ^20.11.1 to ^21.3.2.

	flake8-docstrings from 1.5.0 to 1.6.0.

	codecov/codecov-action from v1.0.13 to v1.3.1.

Fixed

	bump2version invoke command.

1.2.1 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v1.2.0...v1.2.1] - 2021-01-23

Changed

	xdoctest from 0.15.0 to 0.15.2.

Fixed

	bump2version config file.

1.2.0 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v1.1.3...v1.2.0] - 2021-01-17

Added

	pyproject documentation entry.

	pyproject tool.poetry.urls section.

Fixed

	Readme links.

Changed

	sphinx from ^3.4.0 to ^3.4.3.

	safety from ^1.10.0 to ^1.10.3.

	flake8-blind-except from ^0.1.1 to ^0.2.0.

	flake8-annotations from ^2.1.0 to ^2.5.0.

	isort from ^5.6.4 to ^5.7.0.

	invoke from ^1.4.1 to ^1.5.0.

	flakehell from ^0.7.1 to ^0.9.0.

	parametrize cli tests.

1.1.3 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v1.1.2...v1.1.3] - 2020-12-23

Changed

	sphinx from ^3.3.0 to ^3.4.0.

	recommonmark from 0.6.0 to 0.7.1.

	watchdog from ^0.10.2 to ^1.0.2.

	pre-commit from ^2.8.2 to ^2.9.3.

	flakehell from ^0.7.0 to ^0.7.1.

	safety from ^1.9.0 to ^1.10.0.

	darglint from ^1.3.0 to ^1.5.8.

	flake8-bugbear from ^20.1.4 to ^20.11.1.

	actions/setup-python from v2.1.4 to v2.2.1.

	pytest from ^6.1.2 to ^6.2.1.

1.1.2 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v1.1.1...v1.1.2] - 2020-11-07

Changed

	flakehell from ^0.6.1 to ^0.7.0.

	create-release action from v1 to v1.1.4.

	checkout action from v2 to v2.3.4.

	setup-python action from v2 to v2.1.4.

	sphinx from ^3.2.1 to ^3.3.0.

	pre-commit from ^2.7.1 to ^2.8.2.

	pytest from ^6.1.1 to ^6.1.2.

Fixes

	mypy nox session requirements.

1.1.1 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v1.1.0...v1.1.1] - 2020-10-18

Fixes

	docs/conf.py imports.

	coverage config.

1.1.0 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v1.0.1...v1.1.0] - 2020-10-17

Changed

	to src structure.

	poject_name validation.

Added

	project_title.

1.0.1 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v1.0.0...v1.0.1] - 2020-10-15

Fixed

	unnecessary validation_depth on mindsers/changelog-reader-action.

1.0.0 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v0.2.1...v1.0.0] - 2020-10-15

Added

	License section on the docs.

	Codecov integration.

	PyPI and TestPyPI steps on the release workflow.

	Python 3.9 support.

Changed

	github actions ready to configure activity types.

	isort from ^5.5.4 to ^5.6.4.

	bump2version from master to ^1.0.1.

	mypy from ^0.782 to ^0.790.

	coverage from ^5.1 to ^5.3.

	pytest-cov from ^2.8.1 to ^2.10.1.

	pytest from ^5.4.2 to ^6.1.1.

	flake8 from ^3.7.9 to ^3.8.4.

Fixed

	missing pre-commit requirement.

	get release version on the release workflow.

0.2.1 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v0.2.0...v0.2.1] - 2020-10-05

Changed

	changelog-reader-action from v1.1.0 to v2.

	sphinx from 3.0.4 to 3.2.1.

	flakehell from 0.3.6 to 0.6.1.

	black from 19.10b0 to 20.8b1.

	xdoctest from 0.12.0 to 0.15.0.

	mypy from 0.770 to 0.782

Fixed

	read the docs dependencies.

0.2.0 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v0.1.4...v0.2.0] - 2020-10-04

Added

	Dependabot configuration.

	Safety session to nox.

	Safety step to the test workflow.

Changed

	flake8 version to ^3.7.9.

	isort version to ^5.5.4.

	poetry export without hashes on the noxfiles.

Removed

	Pyup.io integration.

	seed-isort-config from the pre-commit-config.

Fixed

	docs/readme.md symbolic link to README.md.

	docs/changelog.md symbolic link to CHANGELOG.md.

	missing badges.

0.1.4 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v0.1.3...v0.1.4] - 2020-09-07

Changed

	Python actions to the v2.

Removed

	Unnecessary python steps on the release workflow.

Fixed

	bump2version version.

0.1.3 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v0.1.2...v0.1.3] - 2020-08-13

Fixed

	isort support for pyproject.toml

	docs conf code style.

Removed

	sphinx-autodoc-typehints from the dev requirements.

0.1.2 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v0.1.1...v0.1.2] - 2020-06-14

Fixed

	Read the docs build config.

Removed

	Pytype from the dev requirements.

0.1.1 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/v0.1.0...v0.1.1] - 2020-06-14

Added

	New option serve to the invoke docs task.

Changed

	Improve docs tutorial section.

	Improve docs index section.

Fixed

	README spelling.

	Ivoke pytype task typo.

0.1.0 [https://github.com/mario-bermonti/cookiecutter-modern-pypackage/compare/releases/tag/v0.1.0] - 2020-06-11

Added

	First release.

Contributing

Thank you for your interest in improving this project.

All contributions are welcome and greatly appreciated! Every little bit improves the
project and helps its users.

The following sections detail a variety of ways to contribute and how to get started.

Credit will always be given to the people making contributions.

If you do decide to work on an issue, please indicate so in a comment to the issue
so it’s assigned to you and other people don’t work on it simultaneously.

This is a beginner-friendly project so don’t hesitate to write a comment in the issue you are
interested in if you have questions, would like to discuss some issue further, or you need help
in any way.

Types of Contributions

Spread the word

Tell others about your experience with cookiecutter-modern-pypackage. You can share it on social media and follow it on GitHub.

Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/mario-bermonti/cookiecutter-modern-pypackage/issues.

Please let us know about your experience using cookiecutter-modern-pypackage. You can tell us about the things that you like, the things that can be improved, and the things that you would like cookiecutter-modern-pypackage to do.

If you are proposing a feature:

	How it would help you and other users (mainly researchers).

	Explain all the details of how it would work.

	Keep the scope as narrow as possible to make it easier to implement.

	Remember that this is a volunteer-driven project and for this reason it may not be feasible
to implement the feature or it may take some time.

Write Documentation

cookiecutter-modern-pypackage could always use more documentation. You can contribute to the documentation
by:

	Fixing typographical, grammatical, or spelling errors.

	Improving documentation that is unclear or incorrect.

	Creating or improving examples and tutorials.

	Writing blog posts, articles, and similar content that share how you are using this project and your best practices with us.

Report Bugs

You can report bugs at https://github.com/mario-bermonti/cookiecutter-modern-pypackage/issues.

Please provide all the details that are asked when you create the issue to make sure
it is understood correctly.

Fix existing bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with
“enhancement” and “help wanted” is open to whoever wants to
implement it.

Start contributing!

Set up the development environment

Ready to contribute? Here’s how to set up
cookiecutter-modern-pypackage in your local development environment.

You will need Python 3.6+ [https://www.python.org/downloads/] installed.

	Fork the cookiecutter-modern-pypackage repo [https://github.com/mario-bermonti/cookiecutter-modern-pypackage] on GitHub.

	Clone your fork locally:

git clone git@github.com:your_name_here/cookiecutter-modern-pypackage.git

	We use poetry to manage dependencies. Install it with the following command.

 curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python -

	Install the project, its dependencies, and the virtualenv:

 poetry install

	Make sure everything is working properly before making any changes by running poetry run invoke dev-tasks.

Development tasks (important side note)

In order to run anything inside the virtual environment every command has to be prefixed with poetry run <command>.

For example, to run python inside the virtual environment you would run poetry run python.

We have most of our development tasks pre-configured to run automatically with invoke. :grin:

The most important tasks are:

	Command
	Description

	dev-tasks
	Run all development tasks.

	format
	Format code.

	tests
	Run tests.

	coverage
	Create coverage report.

	lint
	Run all linting.

	mypy
	Run mypy.

	docs
	Build documentation.

	clean
	Run all clean sub-tasks.

You can find see all the development tasks that pre-configured by running poetry run invoke --list.

Making changes

Workflow

We work by protecting master branch and only merging changes that don’t break existing functionality and are tested.

How do we do it?:

	We identify something that must change

	We create an issue on GitHub, if it doesn’t already exist

	We create a new branch named after the issue we want “fix” (issue-$TASKNUMBER)

	We make changes and test everything works

	Style the code

	We then create a pull request to master branch that is reviewed and if approved, it is merged
into master

This way we achieve an easy and scalable development process that avoids merge
conflicts and long-living branches.

In this method, the master branch always has the latest working version of the software, is stable,
and is working.

How to make changes

Follow this steps when working on changes to the project. Please see the Workflow section for
important details about making changes.

	Create a branch for local development. All the changes must be in this branch.

$ git checkout -b name-of-your-bugfix-or-feature

	Run the all checks to make sure everything is working before making
any changes

 $ poetry run invoke dev-tasks

	Add any changes you want

	Add tests for the new changes

	Run the tests and make sure they all pass

 $ poetry run invoke tests

	Edit the documentation if appropriate (this is required for new features)

	Make sure the changes to the documentation are correct and that the docs build

 $ poetry run invoke docs

	Make sure everything is fine (e.g., tests, code style, coverage)

 $ poetry run invoke dev-tasks

If you find that something is not working as expected, fix it, check that it is working appropriately
by running the appropriate invoke command (see Development tasks section).

 $ poetry run invoke <command>

After it is fixed, run all development tasks again

 $ poetry run invoke dev-tasks

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit

Cookiecutter-Modern-Pypackage follows specific guidelines for commit messages:

	Make a reference to the relevant GitHub issues in your commit message (e.g., Fix #1234)
We use imperative mood for commit messages (fix x, instead of fixed x).
See this commit guide [https://chris.beams.io/posts/git-commit/]. A tip is to use a title for your commit message
that completes “This commit will…” [Fix issue X].

	The subject line should have < 80 chars

	Leave one line blank

	[Optional] Explain any relevant details or decisions made

	Push your changes to GitHub

 $ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through GitHub (see the Pull Request Guidelines section).

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests for new functionality.

	If the pull request adds functionality, the docs should be updated.

	The pull request should pass all tests and must work for all the supported Python versions. It
must also pass all checks in the GitHub CI.

Feel free to submit your pull request early so we can discuss it and iterate on the process.

Tips

We really value your contributions and want to integrate your changes. The following are tips to
improve the probability that your changes are accepted.

	Make sure they don’t break existing functionality

	Include tests for the changes you made

	Commit often

	Make small, easy to understand commits (i.e., atomic commits)

	Keep your changes in the narrowest scope possible (e.g., create tutorial for using the X object)

	It is recommended to open an issue before starting work on anything. This will allow a chance to
talk it over with the maintainers and validate your approach.

Releasing cookiecutter-modern-pypackage

Maintainers, please review the guide for releasing new versions
of cookiecutter-modern-pypackage on Github and Pypi.

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at
mbermonti1132@gmail or
mbermonti@psm.edu. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

Prompts

When you create a package, you are prompted to enter these values.

Templated Values

The following appear in various parts of your generated project.

	full_name
	Your full name.

	email
	Your email address.

	github_username
	Your GitHub username.

	project_name
	The name of your new Python package project. This is used in the package name and the Github repository name, so use - insteed of spaces.

	project_slug
	The namespace of your Python package. This should be Python import-friendly. Typically, it is the slugified version of project_name.

	project_title
	The title of your new Python project. This is used in documentation, so spaces and any characters are fine here.

	project_short_description
	A 1-sentence description of what your Python package does.

	version
	The starting version number of the package.

Options

The following package configuration options set up different features for your project.

	open_source_license
	Whether to add a license file. Options: [“MIT”, “BSD”, “ISC”, “Apache Software License 2.0”, “GNU General Public License v3”, “Not open source”s]

	command_line_interface
	Whether to create a console script using Click. Console script entry point will match the project_name. Options: [“Click”, “No command-line interface”]

Invoke

The generated project is ready to run some useful tasks like formatting, linting, testing.

To do this we use pyinvoke [http://www.pyinvoke.org/] to wrap up the required commands.

Execute inv[oke] –list to see the list of available commands.

$ poerty shell
$ inv[oke] --list
Available tasks:

 clean Run all clean sub-tasks.
 clean-build Clean up files from package building.
 clean-docs Clean up files from documentation builds.
 clean-python Clean up python file artifacts.
 clean-tests Clean up files from testing.
 coverage Create coverage report.
 docs Build documentation.
 flake8 Run flake8.
 format Format code.
 hooks Run pre-commit hooks.
 install-hooks Install pre-commit hooks.
 lint Run all linting.
 mypy Run mypy.
 safety Run safety.
 tests Run tests.
 version Bump version.

Console Script Setup

Optionally, your package can include a console script using Click (Python 3.6+).

How It Works

If the ‘command_line_interface’ option is set to [‘click’] during setup, cookiecutter will
add a file ‘cli.py’ in the project_slug subdirectory. An entry point is added to
pyproject.toml that points to the main function in cli.py.

Usage

To use the console script in development:

pip install -e projectdir

‘projectdir’ should be the top level project directory with the pyproject.toml file

The script will be generated with output for no arguments and –help.

	--help

	show help menu and exit

More Details

You can read more about Click at:
http://click.pocoo.org/

MIT License

Copyright (c) 2021 Mario E. Bermonti Pérez

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Index

Release guide

This guide describes how to release cookiecutter-modern-pypackage on Github and Pypi.

	Create new branch named bump-cookiecutter-modern-pypackage-version-[version-number].

	Add a label to the branch that describes the part of the version number that
will be bumped. Possible parts are major, minor, and patch.

	Bump the version

$ poetry run invoke version part # possible: major / minor / patch

	Document changes in the CHANGELOG.md (only a summary)

	Commit the changes

 $ git add .
 $ git commit

	Push the tags to Github

$ git push
$ git push –tags

	If all checks pass in the ci, merge this branch into the master branch.

	Complete the final version of the latest release draft on GitHub. This draft was
automatically generated by release-drafter.

	Make sure the version and tag associated with it is correct

	Add a summary of the changes

	Revise the draft and make any appropriate changes

	Publish the draft on GitHub

 nav.xhtml

 Table of Contents

 		
 Welcome to cookiecutter-modern-pypackage’s documentation!

 		
 Cookiecutter Modern PyPackage

 		
 Features

 		
 Quickstart

 		
 Contributing to this project

 		
 Credits

 		
 Tutorial

 		
 Step 1: Install Cookiecutter

 		
 Step 2: Generate Your Package

 		
 Step 3: Create a GitHub Repo

 		
 Step 4: Install Dev Requirements

 		
 Step 5: Set Up Codecov

 		
 Step 6: Set Up Read the Docs

 		
 Step 7: Release on PyPI

 		
 Having problems?

 		
 Changelog

 		
 Unreleased

 		
 2.0.0 - 2021-12-05

 		
 Changed

 		
 1.2.2 - 2021-03-19

 		
 Changed

 		
 Fixed

 		
 1.2.1 - 2021-01-23

 		
 Changed

 		
 Fixed

 		
 1.2.0 - 2021-01-17

 		
 Added

 		
 Fixed

 		
 Changed

 		
 1.1.3 - 2020-12-23

 		
 Changed

 		
 1.1.2 - 2020-11-07

 		
 Changed

 		
 Fixes

 		
 1.1.1 - 2020-10-18

 		
 Fixes

 		
 1.1.0 - 2020-10-17

 		
 Changed

 		
 Added

 		
 1.0.1 - 2020-10-15

 		
 Fixed

 		
 1.0.0 - 2020-10-15

 		
 Added

 		
 Changed

 		
 Fixed

 		
 0.2.1 - 2020-10-05

 		
 Changed

 		
 Fixed

 		
 0.2.0 - 2020-10-04

 		
 Added

 		
 Changed

 		
 Removed

 		
 Fixed

 		
 0.1.4 - 2020-09-07

 		
 Changed

 		
 Removed

 		
 Fixed

 		
 0.1.3 - 2020-08-13

 		
 Fixed

 		
 Removed

 		
 0.1.2 - 2020-06-14

 		
 Fixed

 		
 Removed

 		
 0.1.1 - 2020-06-14

 		
 Added

 		
 Changed

 		
 Fixed

 		
 0.1.0 - 2020-06-11

 		
 Added

 		
 Contributing

 		
 Types of Contributions

 		
 Spread the word

 		
 Submit Feedback

 		
 Write Documentation

 		
 Report Bugs

 		
 Fix existing bugs

 		
 Implement Features

 		
 Start contributing!

 		
 Set up the development environment

 		
 Development tasks (important side note)

 		
 Making changes

 		
 Tips

 		
 Releasing cookiecutter-modern-pypackage

 		
 Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

 		
 Prompts

 		
 Templated Values

 		
 Options

 		
 Invoke

 		
 Console Script Setup

 		
 How It Works

 		
 Usage

 		
 More Details

_static/plus.png

_static/file.png

_static/minus.png

